Areas and Volumes of similar shapes
Name:

1) Triangle $A B C$ is similar to triangle $D E F$.

Find
a) x
b) y
2) Find the missing length, x, in rectangle $A B C D$ shown below

4) The two rectangles, A and B, are mathematically similar.

The lengths in B are twice the lengths in A .
The area of A is $14 \mathrm{~cm}^{2}$. Find the area of B.

5) The two squares, A and B, are mathematically similar.

The lengths in B are twice the lengths in A .
The area of B is $40 \mathrm{~cm}^{2}$. Find the area of A.

6) The two squares, X and Y, are mathematically similar.

The areas of X and Y are $17 \mathrm{~cm}^{2}$ and $272 \mathrm{~cm}^{2}$, respectively.
The length of X is 5 cm . Find the corresponding length of Y .
7) The two squares, X and Y, are mathematically similar.

The areas of X and Y are $19 \mathrm{~cm}^{2}$ and $304 \mathrm{~cm}^{2}$, respectively.
The length of Y is 40 cm . Find the corresponding length of X.

8) Two cubes, A and B, are mathematically similar.

The height of B is triple the corresponding height of A.
The surface area of A is $19 \mathrm{~cm}^{2}$. Find the surface area of B.

9) Two cylinders, A and B, are mathematically similar.

The height of B is twice the corresponding height of A.
The volume of A is $13 \mathrm{~cm}^{3}$. Find the volume of B.

10) Two cylinders, A and B, are mathematically similar.

The height of B is twice the corresponding height of A. The volume of B is $120 \mathrm{~cm}^{3}$. Find the volume of A.

11) Two spheres, A and B, are mathematically similar.

The volumes of A and B are $11 \mathrm{~cm}^{3}$ and $297 \mathrm{~cm}^{3}$, respectively.
The radius of A is 6 cm . Find the corresponding radius of B.
12) Two cubes, A and B, are mathematically similar.

The volumes of A and B are $17 \mathrm{~cm}^{3}$ and $136 \mathrm{~cm}^{3}$, respectively.
The height of B is 18 cm . Find the corresponding height of A.

Solutions for the assessment Areas and Volumes of similar shapes

1) $x=6 \mathrm{~cm}, y=10 \mathrm{~cm}$
2) $x=11 \mathrm{~cm}$
3) $x=12 \mathrm{~cm}, y=30 \mathrm{~cm}$
4) Area $=56 \mathrm{~cm}^{2}$
5) Area $=10 \mathrm{~cm}^{2}$
6) length of $Y=20 \mathrm{~cm}$
7) length of $X=10 \mathrm{~cm}$
8) Surface area of $B=171 \mathrm{~cm}^{2}$
9) Volume of $B=104 \mathrm{~cm}^{3}$
10) Volume of $\mathrm{A}=15 \mathrm{~cm}^{3}$
11) radius of $B=18 \mathrm{~cm}$
12) height of $A=9 \mathrm{~cm}$
